Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Anal Chem ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652893

RESUMO

Accurate analysis of microRNAs (miRNAs) at the single-cell level is extremely important for deeply understanding their multiple and intricate biological functions. Despite some advancements in analyzing single-cell miRNAs, challenges such as intracellular interferences and insufficient detection limits still remain. In this work, an ultrasensitive nanopore sensor for quantitative single-cell miRNA-155 detection is constructed based on ionic current rectification (ICR) coupled with enzyme-free catalytic hairpin assembly (CHA). Benefiting from the enzyme-free CHA amplification strategy, the detection limit of the nanopore sensor for miRNA-155 reaches 10 fM and the nanopore sensor is more adaptable to complex intracellular environments. With the nanopore sensor, the concentration of miRNA-155 in living single cells is quantified to realize the early diagnosis of triple-negative breast cancer (TNBC). Furthermore, the nanopore sensor can be applied in screening anticancer drugs by tracking the expression level of miRNA-155. This work provides an adaptive and universal method for quantitatively analyzing intracellular miRNAs, which will greatly improve our understanding of cell heterogeneity and provide a more reliable scientific basis for exploring major diseases at the single-cell level.

2.
CNS Neurosci Ther ; 30(4): e14709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605477

RESUMO

AIMS: Although radiotherapy is a core treatment modality for various human cancers, including glioblastoma multiforme (GBM), its clinical effects are often limited by radioresistance. The specific molecular mechanisms underlying radioresistance are largely unknown, and the reduction of radioresistance is an unresolved challenge in GBM research. METHODS: We analyzed and verified the expression of nuclear autoantigenic sperm protein (NASP) in gliomas and its relationship with patient prognosis. We also explored the function of NASP in GBM cell lines. We performed further mechanistic experiments to investigate the mechanisms by which NASP facilitates GBM progression and radioresistance. An intracranial mouse model was used to verify the effectiveness of combination therapy. RESULTS: NASP was highly expressed in gliomas, and its expression was negatively correlated with the prognosis of glioma. Functionally, NASP facilitated GBM cell proliferation, migration, invasion, and radioresistance. Mechanistically, NASP interacted directly with annexin A2 (ANXA2) and promoted its nuclear localization, which may have been mediated by phospho-annexin A2 (Tyr23). The NASP/ANXA2 axis was involved in DNA damage repair after radiotherapy, which explains the radioresistance of GBM cells that highly express NASP. NASP overexpression significantly activated the signal transducer and activator of transcription 3 (STAT3) signaling pathway. The combination of WP1066 (a STAT3 pathway inhibitor) and radiotherapy significantly inhibited GBM growth in vitro and in vivo. CONCLUSION: Our findings indicate that NASP may serve as a potential biomarker of GBM radioresistance and has important implications for improving clinical radiotherapy.


Assuntos
Anexina A2 , Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Camundongos , Humanos , Masculino , Glioblastoma/genética , Fator de Transcrição STAT3/genética , Anexina A2/genética , Anexina A2/metabolismo , Anexina A2/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sêmen/metabolismo , Proliferação de Células/genética , Espermatozoides/metabolismo
3.
Plant Physiol ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466216

RESUMO

Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KRP (KIP-RELATED PROTEIN) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with SHOOT MERISTEMLESS (STM), which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.

4.
Nat Metab ; 6(3): 458-472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467889

RESUMO

Ghrelin, produced mainly by gastric X/A-like cells, triggers a hunger signal to the central nervous system to stimulate appetite. It remains unclear whether X/A-like cells sense gastric distention and thus regulate ghrelin production. Here we show that PIEZO1 expression in X/A-like cells decreases in patients with obesity when compared to controls, whereas it increases after sleeve gastrectomy. Male and female mice with specific loss of Piezo1 in X/A-like cells exhibit hyperghrelinaemia and hyperphagia and are more susceptible to overweight. These phenotypes are associated with impairment of the gastric CaMKKII/CaMKIV-mTOR signalling pathway. Activation of PIEZO1 by Yoda1 or gastric bead implantation inhibits ghrelin production, decreases energy intake and induces weight loss in mice. Inhibition of ghrelin production by Piezo1 through the CaMKKII/CaMKIV-mTOR pathway can be recapitulated in a ghrelin-producing cell line mHypoE-42. Our study reveals a mechanical regulation of ghrelin production and appetite by PIEZO1 of X/A-like cells, which suggests a promising target for anti-obesity therapy.


Assuntos
Grelina , Serina-Treonina Quinases TOR , Humanos , Masculino , Feminino , Camundongos , Animais , Grelina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Obesidade/metabolismo , Apetite/fisiologia , Ingestão de Alimentos , Canais Iônicos/genética
5.
FASEB J ; 38(2): e23409, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193628

RESUMO

Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus, yet there is no effective treatment. Exploring the development of DKD is essential to treatment. Podocyte injury and inflammation are closely related to the development of DKD. However, the mechanism of podocyte injury and progression in DKD remains largely unclear. Here, we observed that FTO expression was significantly upregulated in high glucose-induced podocytes and that overexpression of FTO promoted podocyte injury and inflammation. By performing RNA-seq and MeRIP-seq with control podocytes and high glucose-induced podocytes with or without FTO knockdown, we revealed that serum amyloid A2 (SAA2) is a target of FTO-mediated m6A modification. Knockdown of FTO markedly increased SAA2 mRNA m6A modification and decreased SAA2 mRNA expression. Mechanistically, we demonstrated that SAA2 might participate in podocyte injury and inflammation through activation of the NF-κB signaling pathway. Furthermore, by generating podocyte-specific adeno-associated virus 9 (AAV9) to knockdown SAA2 in mice, we discovered that the depletion of SAA2 significantly restored podocyte injury and inflammation. Together, our results suggested that upregulation of SAA2 promoted podocyte injury through m6A-dependent regulation, thus suggesting that SAA2 may be a therapeutic target for diabetic kidney disease.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Nefropatias Diabéticas , Podócitos , Proteína Amiloide A Sérica , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Nefropatias Diabéticas/genética , Glucose , Inflamação/genética , NF-kappa B , RNA Mensageiro/genética , Transdução de Sinais , Proteína Amiloide A Sérica/genética
6.
Adv Sci (Weinh) ; 11(11): e2307872, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38178606

RESUMO

Aqueous zinc-ion batteries (AZIBs) are considered as attractive energy storage systems with great promise owing to their low cost, environmental friendliness and high safety. Nevertheless, cathode materials with stable structure and rapid diffusion of zinc ions are in great demand for AZIBs. In this work, a new kind of potassium vanadate compound (KV3 O8 ) is synthesized with fibrous morphology as an excellent cathode material for AZIBs, which shows outstanding electrochemical performance. KV3 O8 exhibits a high discharge capacity of 556.4 mAh g-1 at 0.8 A g-1 , and the capacity retention is 81.3% at 6 A g-1 even after a long cycle life of 5000 cycles. The excellent performance of the KV3 O8 cathode is benefited from the structural stability, sufficient active sites, and high conductivity, which is revealed by in situ X-ray diffraction and various other characterizations. This work offers a new design strategy into fabricating high efficiency cathode materials for AZIBs and beyond.

7.
Clin Epigenetics ; 15(1): 170, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865763

RESUMO

Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.


Assuntos
Metilação de DNA , Nefropatias , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rim/metabolismo , Nefropatias/genética
8.
J Comp Neurol ; 531(17): 1752-1771, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37702312

RESUMO

In this study, thalamic connections of the caudal part of the posterior parietal cortex (PPCc) are described and compared to connections of the rostral part of PPC (PPCr) in strepsirrhine galagos. PPC of galagos is divided into two parts, PPCr and PPCc, based on the responsiveness to electrical stimulation. Stimulation of PPC with long trains of electrical pulses evokes different types of ethologically relevant movements from different subregions ("domains") of PPCr, while it fails to evoke any movements from PPCc. Anatomical tracers were placed in both dorsal and ventral divisions of PPCc to reveal thalamic origins and targets of PPCc connections. We found major thalamic connections of PPCc with the lateral posterior and lateral pulvinar nuclei, distinct from those of PPCr that were mainly with the ventral lateral, anterior pulvinar, and posterior nuclei. The anterior, medial, and inferior pulvinar, ventral anterior, ventral lateral, and intralaminar nuclei had fewer connections with PPCc. Dominant connections of PPCc with lateral posterior and lateral pulvinar nuclei provide evidence that unlike the sensorimotor-orientated PPCr, PPCc is more involved in visual-related functions.


Assuntos
Galago , Lobo Parietal , Animais , Galago/fisiologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Tálamo/fisiologia , Movimento/fisiologia , Núcleos Talâmicos
9.
Appl Opt ; 62(15): 3967-3975, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37706707

RESUMO

In this paper, we implement integrated magnetic flux concentrators (MFCs) combined with a multi-frequency modulation method to achieve high-magnetic-detection sensitivity using a nuclear spin on the solid nuclear spin in diamonds. First, we excited the nuclear spin in diamonds using a continuous-wave technique, and a linewidth of 1.37 MHz and frequency resolution of 79 Hz were successfully obtained, which is reduced by one order of the linewidth, and increased by 56 times in frequency resolution compared to that excited by an electron spin. The integrated high-permeability MFC was designed to magnify the magnetic field near the diamond, with a magnification of 9.63 times. Then, the multi-frequency modulation technique was used to fully excite the hyperfine energy level of Nitrogen Vacancy (NV) centers along the four axes on the diamond with MFC, and magnetic detection sensitivity of 250p T/H z 1/2 was realized. These techniques should allow designing an integrated NV magnetometer with high sensitivity in a small volume.

10.
Plant Physiol ; 194(1): 391-407, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738410

RESUMO

Exposure of dark-grown etiolated seedlings to light triggers the transition from skotomorphogenesis/etiolation to photomorphogenesis/de-etiolation. In the life cycle of plants, de-etiolation is essential for seedling development and plant survival. The mobilization of soluble sugars (glucose [Glc], sucrose, and fructose) derived from stored carbohydrates and lipids to target organs, including cotyledons, hypocotyls, and radicles, underpins de-etiolation. Therefore, dynamic carbohydrate biochemistry is a key feature of this phase transition. However, the molecular mechanisms coordinating carbohydrate status with the cellular machinery orchestrating de-etiolation remain largely opaque. Here, we show that the Glc sensor HEXOKINASE 1 (HXK1) interacts with GROWTH REGULATOR FACTOR5 (GRF5), a transcriptional activator and key plant growth regulator, in Arabidopsis (Arabidopsis thaliana). Subsequently, GRF5 directly binds to the promoter of phytochrome A (phyA), encoding a far-red light (FR) sensor/cotyledon greening inhibitor. We demonstrate that the status of Glc within dark-grown etiolated cotyledons determines the de-etiolation of seedlings when exposed to light irradiation by the HXK1-GRF5-phyA molecular module. Thus, following seed germination, accumulating Glc within dark-grown etiolated cotyledons stimulates a HXK1-dependent increase of GRF5 and an associated decrease of phyA, triggering the perception, amplification, and relay of HXK1-dependent Glc signaling, thereby facilitating the de-etiolation of seedlings following light irradiation. Our findings, therefore, establish how cotyledon carbohydrate signaling under subterranean darkness is sensed, amplified, and relayed, determining the phase transition from skotomorphogenesis to photomorphogenesis on exposure to light irradiation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plântula/metabolismo , Cotilédone/metabolismo , Estiolamento , Glucose/metabolismo , Luz , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo A/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Altern Ther Health Med ; 29(7): 400-403, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535914

RESUMO

Objectives: To investigate the influence of helper T cell type 1 (Th1)/Th2 cytokines and Treg cells on the pregnancy outcome of patients with recurrent pregnancy loss (RPL) and to reveal the predictive value of their combination on the pregnancy outcome. Methods: The 165 RPL patients admitted to the Reproductive Medicine Department of the Second Hospital of Lanzhou University from September 2019 to June 2021 served as the research subjects for the study. The subjects comprised a live birth group (102 patients) or a non-live birth group (63 patients) based on their pregnancy outcomes. All patients were tracked through the end of pregnancy. Flow cytometry was applied to determine Treg and Th1/Th2 cytokine levels in the peripheral blood of patients without pregnancy. Results: The levels of interleukin-6 (IL-6), IL-2, IL-10, and Treg in the RPL live birth group were significantly higher than those in the non-live birth group. The ratio of TNF - α/ IL-6, NF-α/ IL-10, IFN- γ/ IL-6, IFN- γ/ IL-10 in the non-live birth group increased significantly. The area under the curve (AUC) of Th1/Th2 cytokines combined with Treg cells was 0.786 (95% CI: 0.712-0.860), the specificity was 76.2%, and the sensitivity was 74.5%. Conclusion: Treg and Th1/Th2 cytokines showed a predictive ability for the pregnancy outcome of patients with recurrent pregnancy loss and their higher combined predictive efficacy. Meanwhile, in the Th1/Th2 immune response, its ratio was more important than the expression of a single cytokine.


Assuntos
Aborto Habitual , Citocinas , Feminino , Gravidez , Humanos , Citocinas/metabolismo , Resultado da Gravidez , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aborto Habitual/metabolismo
12.
Heliyon ; 9(6): e16755, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37292305

RESUMO

Background: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder leading to cognitive impairment in the elderly, and no effective treatment exists. Increasing evidence has demonstrated that physical therapy and electroacupuncture (EA) effectively improve spatial learning and memory abilities. Nevertheless, the mechanism underlying the effects of EA on AD pathology is largely unexplored. Acupuncture at Zusanli (ST 36) has previously been shown to improve cognitive impairment in AD, but the mechanism is unclear. According to recent studies, EA drives the vagal-adrenal axis from the hindlimb ST 36 acupoint but not from the abdominal Tianshu (ST 25) to curb severe inflammation in mice. This study examined whether ST 36 acupuncture improves cognitive dysfunction in AD model mice by improving neuroinflammation and its underlying mechanism. Methods: Male 5xFAD mice (aged 3, 6, and 9 months) were used as the AD animal model and were randomly divided into three groups: the AD model group (AD group), the electroacupuncture at ST 36 acupoint group (EA-ST 36 group), and the electroacupuncture at ST 25 acupoint group (EA-ST 25 group). Age-matched wild-type mice were used as the normal control (WT) group. EA (10 Hz, 0.5 mA) was applied to the acupoints on both sides for 15 min, 5 times per week for 4 weeks. Motor ability and cognitive ability were assessed by the open field test, the novel object recognition task, and the Morris water maze test. Thioflavin S staining and immunofluorescence were used to mark Aß plaques and microglia. The levels of NLRP3, caspase-1, ASC, interleukin (IL)-1ß, and IL-18 in the hippocampus were assayed by Western blotting or qRT-PCR. Results: EA at ST 36, but not ST 25, significantly improved motor function and cognitive ability and reduced both Aß deposition and microglia and NLRP3 inflammasome activation in 5×FAD mice. Conclusion: EA stimulation at ST 36 effectively improved memory impairment in 5×FAD mice by a mechanism that regulated microglia activation and alleviated neuroinflammation by inhibiting the NLRP3 inflammatory response in the hippocampus. This study shows that ST 36 may be a specific acupoint to improve the condition of AD patients.

13.
Front Immunol ; 14: 1159061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377954

RESUMO

CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.


Assuntos
Neoplasias Peritoneais , Neoplasias Gástricas , Feminino , Humanos , Peritônio , Células Endoteliais , Fosfatidilinositol 3-Quinases
14.
J Colloid Interface Sci ; 648: 616-622, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321080

RESUMO

Porous organic polymers are considered as excellent candidates for the electrode materials in rechargeable battery due to their desirable properties including porosity, customizable structure, and intrinsic chemical stability. Herein a Salen-based porous aromatic framework (Zn/Salen-PAF) is synthesized through a metal directed method and further used as efficient anode materialfor lithium-ion battery. Attributing to the stable functional skeleton, Zn/Salen-PAF delivers a reversible capacity of 631 mAh·g-1 at 50 mA·g-1, a high-rate capability of 157 mAh·g-1 at 20.0 A·g-1 and a long-term cycling capacity of 218 mAh·g-1 at 5.0 A·g-1 even after 2000 cycles. Compared to the Salen-PAF without metal ions, Zn/Salen-PAF possesses better electrical conductivity and more active sites. X-ray photoelectron spectroscopy (XPS) investigation indicates that the coordination of Zn2+ with N2O2 unit not only improves the conjugation of the framework but also contributes to the in situ cross-sectional oxidation of the ligand during reaction, which results in the electron redistribution of oxygen atom and the formation of CO bonds.

15.
Food Chem ; 419: 135979, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030206

RESUMO

Nanocarriers can improve the dispersibility of hydrophobic bioactive compounds and potentially improve the texture of liquid food formulations. Here, nanotubes (NTs) with a high aspect ratio formed by self-assembly of peptides partially hydrolyzed from α-lactalbumin (α-lac) were used to deliver soy isoflavones (IFs) and modify soy milk texture. IFs encapsulated by nanotube (NT/IFs) via hydrophobic interactions, which had improved dispersibility, with a maximum loading efficiency of 4%. The rheological characterization showed that the nanotubes enhanced the viscoelastic property and long term-stability of soy milk. About 80% of the NT/IFs in soy milk survived simulated in in vitro gastric digestion promoting the release of IFs in the intestinal phase. Overall, this work demonstrated that α-lac nanotubes may be a multi-functional carrier system for hydrophobic compounds providing beneficial changes to functional food texture.


Assuntos
Isoflavonas , Leite de Soja , Alimento Funcional , Isoflavonas/análise , Cetonas , Lactalbumina , Leite de Soja/química , Nanotubos/química
16.
Redox Biol ; 62: 102674, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36989575

RESUMO

Renal fibrosis is the common histopathological feature of chronic kidney diseases (CKD), and there is increasing evidence that epigenetic regulation is involved in the occurrence and progression of renal fibrosis. N-myc downstream-regulated gene 2 (NDRG2) is significantly down-regulated in renal fibrosis, the mechanism of which remains unclear. Previous studies have confirmed that the inhibition of NDRG2 expression in tumor cells is related to hyper-methylation, mainly regulated by DNA methyltransferases (DNMTS). Herein, we explored the expression of NDRG2 and its epigenetic regulatory mechanism in renal fibrosis. The results showed that the expression of NDRG2 was significantly inhibited in vivo and in vitro, while the overexpression of NDRG2 effectively alleviated renal fibrosis. Meanwhile, we found that the expression of DNMT1/3A/3B was significantly increased in hypoxia-induced HK2 cells and Unilateral Ureteral Obstruction (UUO) mice accompanied by hyper-methylation of the NDGR2 promoter. Methyltransferase inhibitor (5-AZA-dC) corrected the abnormal expression of DNMT1/3A/3B, reduced the methylation level of NDRG2 promoter and restored the expression of NDRG2. The upstream events that mediate changes in NDRG2 methylation were further explored. Reactive oxygen species (ROS) are important epigenetic regulators and have been shown to play a key role in renal injury due to various causes. Accordingly, we further explored whether ROS could induce DNA-epigenetic changes of the expression of NDRG2 and then participated in the development of renal fibrosis. Our results showed that mitochondria-targeted antioxidants (Mito-TEMPO) could reverse the epigenetic inhibition of NDRG2 in a DNMT-sensitive manner, showing strong ability of DNA demethylation, exhibiting epigenetic regulation and anti-fibrosis effects similar to 5-AZA-dC. More importantly, the anti-fibrotic effects of 5-AZA-dC and Mito-TEMPO were eliminated in HK2 cells with NDRG2 knockdown. These findings highlight that targeting ROS-mediated hyper-methylation of NDRG2 promoter is a potentially effective therapeutic strategy for renal fibrosis, which will provide new insights into the treatment of CKD.


Assuntos
DNA Forma A , Insuficiência Renal Crônica , Animais , Camundongos , Epigênese Genética , Espécies Reativas de Oxigênio , Metiltransferases/genética , Metilação de DNA , Fibrose , Insuficiência Renal Crônica/patologia , Azacitidina/uso terapêutico
17.
Cell Death Dis ; 14(2): 130, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792603

RESUMO

Dysfunction of podocytes has been regarded as an important early pathologic characteristic of diabetic kidney disease (DKD), but the regulatory role of long noncoding RNAs (lncRNAs) in this process remains largely unknown. Here, we performed RNA sequencing in kidney tissues isolated from DKD patients and nondiabetic renal cancer patients undergoing surgical resection and discovered that the novel lncRNA ENST00000436340 was upregulated in DKD patients and high glucose-induced podocytes, and we showed a significant correlation between ENST00000436340 and kidney injury. Gain- and loss-of-function experiments showed that silencing ENST00000436340 alleviated high glucose-induced podocyte injury and cytoskeleton rearrangement. Mechanistically, we showed that fat mass and obesity- associate gene (FTO)-mediated m6A induced the upregulation of ENST00000436340. ENST00000436340 interacted with polypyrimidine tract binding protein 1 (PTBP1) and augmented PTBP1 binding to RAB3B mRNA, promoted RAB3B mRNA degradation, and thereby caused cytoskeleton rearrangement and inhibition of GLUT4 translocation to the plasma membrane, leading to podocyte injury and DKD progression. Together, our results suggested that upregulation of ENST00000436340 could promote podocyte injury through PTBP1-dependent RAB3B regulation, thus suggesting a novel form of lncRNA-mediated epigenetic regulation of podocytes that contributes to the pathogenesis of DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , RNA Longo não Codificante , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Diabetes Mellitus/patologia , Nefropatias Diabéticas/patologia , Epigênese Genética , Glucose/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Podócitos/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
18.
Biochem Biophys Res Commun ; 652: 88-94, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36841099

RESUMO

Acetaminophen (APAP) overdose is the most common cause for acute liver failure (ALF) in the developed countries, with limited treatment options. Piezo1 is a mechanosensitive cation channel. We found that APAP caused upregulation of Piezo1 in both an APAP-induced acute liver injury (ALI) animal model and a mouse hepatocyte cell line AML12. Activation of Piezo1 by its activator Yoda1 reduced APAP-induced hepatotoxicity and ROS level. Mechanistically, activation of Piezo1 led to accumulation of the antioxidant regulator Nrf2 and upregulation of its target genes Nqo1 and Gsta1, while knockdown of Piezo1 downregulated this pathway. Finally, injection of Yoda1 decreased serum AST and ALT levels, reduced cell death and rescued liver injury in the APAP-induced ALI mouse model. Our findings suggested a previously undiscovered protective role of Piezo1 in APAP-induced ALI, which might shed light on a new therapeutic target for this disease.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL , Canais Iônicos/metabolismo
19.
ACS Appl Mater Interfaces ; 15(2): 2922-2932, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36600549

RESUMO

Lithium-sulfur batteries (LSBs) have attracted much attention due to their high energy density and theoretical specific capacity. However, the "shuttle effect" of polysulfides limits their application. Herein, we propose a postsynthetic modification (PSM) strategy to synthesize a fibrous carborane-tailored covalent organic framework (PMCB-COF). Benefiting from its amphiphilicity, strong adsorption ability, high specific surface area, and accessible Li+ transport channels, PMCB-COF could serve as a barrier to polysulfide to inhibit the shuttle effect. The cell assembled with PMCB-COF exhibits a high initial capacity of 926 mAh g-1 at 1 C. A Coulombic efficiency of 98% and a fading rate of only 0.039% per cycle are exhibited even after 1500 cycles. So far as we know, PMCB-COF is one of the best materials as a separator of LSBs. This work provides a safe and efficient avenue for tailoring COFs with carborane and might help promote the development of secure, low-cost, and durable rechargeable batteries.

20.
Int J Biol Macromol ; 231: 123179, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621740

RESUMO

Glycosaminoglycans (GAGs), such as heparin, heparan sulfate and chondroitin sulfate, are playing important roles in various biological processes. Due to the laborious work of organic or enzymatic total synthesis of GAGs, different approaches, including glycopolymers, dendrimers, etc., have been developed to mimic the structures and bioactivities of GAGs, but the syntheses can still be difficult. In the current study, a new format of GAG mimetic structure, supramolecularly assembled polymers, have been easily prepared by mixing fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) and sulfated glyco-modified fluorenylmethoxy derivatives (FGS and FG3S). The self-assembly behavior of these polymers into different structural formats of nanoparticles, nanofibers and macroscopic hydrogels upon adjusted concentrations and composite ratios have been detailed studied. The nanofibers modified with highly sulfated glycol groups (FG3S/Fmoc-FF) showed strong promotion effect for cell proliferation, which efficiency was even similar to that of natural heparin, higher than nanoparticles or non-/low-sulfated glyco-modified nanofibers. Moreover, the supramolecular polymers were further made into hydrogels that capable of 3D cell culture. This study provided a novel and efficient approach for GAG mimicking, showing great potential for tissue engineering related applications.


Assuntos
Glicosaminoglicanos , Nanoestruturas , Glicosaminoglicanos/química , Hidrogéis/química , Polímeros , Heparina , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...